COMPARISON OF BLOOD TRANSFUSION REQUIREMENT IN PATIENTS UNDERGOING TOTAL HIP REPLACEMENT WITH AND WITHOUT INTRAVENOUS TRANEXAMIC ACID: RANDOMIZED CONTROL TRIAL

Muhammad Arshad Ghani^{*1}, Muhammad Adeel Javed², Muhammad Awais Latif³

^{*1}Consultant, Orthopedic Surgeon, Jinnah Hospital, Lahore, Pakistan
²Consultant, Orthopedic Surgeon, Fatima Memorial Hospital, Lahore, Pakistan
³PGR, Orthopedic, Fatima Memorial Hospital, Lahore, Pakistan

^{*1}arshadghani2015@gmail.com, ²adeeljaved.aimc@gmail.com, ³dr.awaislatif@gmail.com

DOI: <u>https://doi.org/10.5281/zenodo.15661017</u>

	Abstract
Keywords	Background: Total hip replacement (THR) surgery is often associated with
Hip Fractures, Total Hip	significant blood loss, necessitating blood transfusions. Tranexamic acid (TXA),
Replacement, Tranexamic Acid	an anti-fibrinolytic agent, has shown promise in reducing blood loss during THR
	surgery. However, concerns about its safety have limited its widespread adoption.
Article History	Objectives: This randomized controlled trial aimed to compare the frequency of
Received on 06 May 2025	blood transfusion requirements in patients undergoing THR surgery with and
Accepted on 06 June 2025	without TXA administration.
Published on 14 June 2025	Methods: A total of 122 patients were randomly assigned to receive either TXA
	(15 mg/kg, 5 minutes before incision) or no TXA. Patients' demographics,
Copyright @Author	hemoglobin levels, and blood transfusion requirements were recorded and
Corresponding Author: *	analyzed.
Muhammad Arshad	Results: The study found a statistically significant reduction in blood transfusion
	requirements in the TXA group compared to the no TXA group (4.9% vs. 23.0%,
	p-value = 0.004). The TXA group also demonstrated a lower mean hemoglobin
	drop post-surgery.
	Conclusion: This study provides evidence that TXA administration is a safe
	and effective strategy for reducing blood transfusion requirements after THR
	surgery. The findings support the use of TXA as a standard practice in THR
	surgery to minimize blood loss and transfusion-related complications. Further
	studies are needed to confirm these results and establish the optimal dosage and
	administration protocol for TXA in THR surgery.

INTRODUCTION

The most accepted treatment modality for severe hip disease is total hip arthroplasty (THR). However, total hip replacement comes with many per-operative and post-operative complications for e.g. blood loss which requires blood transfusion, post- operative infections and peri-implant fractures. Bleeding is the most serious complication which demands blood loss replacement but blood transfusion itself has many complications and morbidity for e.g. early and late autoimmune and hemolytic reactions, acute kidney and pulmonary injuries and transfusion involving infections (Chen et al., 2019).

Tissue plasminogen activator (enzyme that induces the conversion of plasminogen to plasmin) is released as a

ISSN: 3007-1208 & 3007-1216

result of tissue injury. Tranexamic acid (TXA) which is a potent plasminogen inhibitor, is being used for reducing blood loss after Total Hip Replacement for past many years to decades (Hines et al.,2019) . The main routes for the administration of tranexamic acid are intravenously, locally and orally. The main adverse effects of the use of tranexamic acid are gastrointestinal disturbances, mild headache, runny or stuffy nose, eye redness, malaise, hypotension, and hypercoagulability states like thromboembolism phenomenon (Mohib et al., 2015).

In a study, a significant difference in transfusion requirement was observed between the TXA and no-TXA groups (no-TXA group 22/114 (19.30%) transfused vs. TXA group 6/213 (2.82%) transfused, p=0.0001 underwent total hip replacement.7 But in another study, insignificant difference in transfusion requirement was observed between the TXA and no-TXA groups (no-TXA group (20.5%) transfused vs. TXA group (19.0%) transfused, p=1.000 underwent total hip replacement (Zhao et al., 2019).

The rationale of the study is that bleeding during this major type of surgery is a major concern for surgeons. Therefore, all measure are being tried and opted by surgeons to overcome this issue. Therefore, it is important to assess the best administration for such patients to reduce blood loss. No local research is available and there is conflict among existing international literature. If IV tranexamic acid usage is found better and effective than placebo, we may use it routinely in our patients for blood loss control.

1. Research Objective

To compare the frequency of blood transfusion requirements in patients undergoing THR surgery with and without TXA administration.

2. Research Methodology

The study was conducted in Orthopedic Surgery Department, Jinnah Hospital, Lahore. The study was commenced from August 20, 2020 to February 20, 2021. The research design randomized control trial was used. The Non-probability consecutive sampling technique was used to draw the sample size of 122 (61 in each group) was calculated taking level of significance as 5%, power of study as 80% and taking transfusion requirement as 19.30% in no-TXA group vs. 2.82 % in TXA group underwent total hip replacement (Stoicea et al., 2018). The following inclusion criteria was followed to select the sample:

• All male and female patients of ages between 25-75 years

• Patients requiring unilateral hip joint replacement as per operational definition

The exclusion criteria were as under:

• Patients with history of previous surgery at hip joint (Medical records) (as increased bleeding occurs in these patients)

Hemoglobin <11 mg/dl pre-operatively

• Patients undergoing bilateral total hip replacement

• Cardiovascular problems like myocardial infarction, atrial fibrillation, heart failure

• Patients with deranged coagulation profile (INR>1.5) (as these patients have more bleeding during surgery)

• Patients with known hypersensitivity to tranexamic acid or its ingredients, (Medical records) (as it is a relative contraindication to use of TXA)

After approval from ethical review board, all 122 (61 in each group) patients who fulfilled the criteria were included in the study. Written informed consent for inclusion in the study was taken from each patient. They were asked for age, gender, body mass index (BMI) and laterality. They were randomly divided into two groups by computer generated numbers: group A (TXA); group B (No TXA).

Patients in group A received intravenous tranexamic acid 15 mg/kg, 5 minutes before the incision while patients in group B did not receive tranexamic acid. All patients in both groups were operated using lateral approach. Patients in both groups received same postoperative care as per departmental protocols. To reduce per-operative complications, pre-operative anesthesia fitness checklist was followed.

Intraoperative bleeding was controlled by controlled dissection, packing and cautery usage. After 4 hours of completion of surgery, a 2ml of venous blood sample from any upper limb was taken and sent to laboratory in EDTA vial for Hemoglobin level. Any patient having excessive per-operative blood loss was managed efficiently as per standard guidelines. All data were recorded on the proforma.

The collected data were analyzed using SPSS v25.0. Mean and standard deviation was calculated for

quantitative values like age and body mass index. Frequencies and percentages were calculated for qualitative variables like gender, side and requirement of blood transfusion. Requirement of blood transfusion was compared in both groups using Chi-

3. Results

Table 1. Characteristics of the Respondents (N=122)

square test. Data (requirement of blood transfusion) were stratified for effect modifiers including age, gender, body mass index, pre-operative Hb, indication of surgery and side. Post-stratification, Chi-square was applied and $p \leq 0.05$ was considered significant.

Characteristics		Groups		Total	
		TXA	No TXA		
Gender	Male	40	36	76	
		65.6%	59.0%	62.3%	
	Female	21	25	46	
		34.4%	41.0%	37.7%	
Age Groups	25-40 years	16	17	33	
		26.2%	27.9%	27.0%	
	41-55 years	20	19	39	
		32.8%	31.1%	32.0%	
	>55 years	25	25	50	
		41.0%	41.0%	41.0%	
Body Mass Index	Normal (18-24.9)	34	35	69	
		55.7%	57.4%	56.6%	
	Overweight (25-	22	21	43	
	29.9)	36.1%	34.4%	35.2%	
	Obese (>30)		5	10	
		8.2%	8.2%	8.2%	
Side between	Right	23	26	49	
Groups		37.7%	42.6%	40.2%	
	Left	38	35	73	
		62.3%	57.4%	59.8%	
ndication of	Osteoarthritis	16	18	34	
Surgery		26.2%	29.5%	27.9%	
	Rheumatoid	12	11	23	
	arthritis	19.7%	18.0%	18.9%	
	Avascular necrosis	17	15	32	
		27.9%	24.6%	26.2%	
	Congenital hip	16	17	33	
	location	26.2%	27.9%	27.0%	
	<12 mg/dl	27	30	57	
Pre-operative Hb	-	44.3%	49.2%	46.7%	
	>12 mg/dl	34	31	65	
	-	55.7%	50.8%	53.3%	
Comparison of		3	14	17	
Blood	Yes	4.9%	23.0%	13.9%	
Fransfusion		58	47	105	
	No	95.1%	77.0%	86.1%	

ISSN: 3007-1208 & 3007-1216

This study enrolled 122 patients requiring unilateral hip joint replacement, divided into two groups: Group-A (TXA) and Group-B (No TXA). The demographic characteristics of both groups were similar, with a mean age of 51.27 years in Group-A and 48.03 years in Group-B. The majority of patients in both groups were males (65.6% in Group-A and 59.0% in Group-B), and most patients had a normal BMI (55.7% in Group-A and 57.4% in Group-B).

Volume 3, Issue 6, 2025

In terms of indications for surgery, both groups had similar distributions of osteoarthritis, rheumatoid arthritis, avascular necrosis, and congenital hip dislocation. The majority of patients in both groups had hemoglobin levels above 12 mg/dl (55.7% in Group-A and 50.8% in Group-B). The study's primary outcome measure was the requirement for blood transfusion, which was significantly lower in the TXA group (4.9%) compared to the No TXA group (23.0%), with a p-value of 0.004.

Blood transfusion required	Groups			
	TXA	No TXA	Total	p-value
	3	14	17	
Yes	4.9%	23.0%	13.9%	
	58	47	105	
No	95.1%	77.0%	86.1%	
	61	61	122	0.004
Total	100.0%	100.0%	100.0%	

Table 2. Comparison of blood transfusion required between groups

The study found that blood transfusion was required in significantly fewer patients in the TXA group (4.9%) compared to the No TXA group (23.0%). Overall, 17 patients (13.9%) required blood transfusion, with 95.1% of patients in the TXA group and 77.0% in the No TXA group not requiring transfusion.

	Blood tra	nsfusiorGroups			
Gender	required	TXA	No TXA	Total	p-value
	Yes	0	9	9	
Male		0.0%	25.0%	11.8%	
	No	40	27	67	
		100.0%	75.0%	88.2%	0.001
	Total	40	36	76	
		100.0%	100.0%	100.0%	
	Yes	3	5	8	
Female		14.3%	20.0%	17.4%	
	No	18	20	38	
		85.7%	80.0%	82.6%	0.611
	Total	21	25	46	
		100.0%	100.0%	100.0%	

The study found a significant association between blood transfusion requirement and gender, with males in the No TXA group having a significantly higher transfusion requirement (25.0% vs 0.0% in TXA group, p-value=0.001). In contrast, females in both the TXA and No TXA groups had similar transfusion requirements, with no significant difference observed (14.3% vs 20.0%, p-value=0.611).

ISSN: 3007-1208 & 3007-1216

	Blood trans	fusiorGroups			
Age groups	required	TXA	No TXA	Total	p-value
	Yes	0	3	3	
		0.0%	17.6%	9.1%	
	No	16	14	30	
25-40 years		100.0%	82.4%	90.9%	0.078
	Total	16	17	33	
		100.0%	100.0%	100.0%	
41-55 years	Yes	2	6	8	
		10.0%	31.6%	20.5%	
	No	18	13	31	
		90.0%	68.4%	79.5%	0.095
	Total	20	19	39	
		100.0%	100.0%	100.0%	
	Yes	1	5	6	
		4.0%	20.0%	12.0%	
	No	24	20	44	
>55 years		96.0%	80.0%	88.0%	0.082
	Total	25	25	50	
		100.0%	100.0%	100.0%	

Additionally, the study found no significant association between blood transfusion requirement

and age groups (p-values=0.078, 0.095, and 0.082 for 25-40, 41-55, and >55 years age groups, respectively).

Table 5: Stratification of blood transfusion required between groups with respect to body mass index

Body mass index (I	BMIBlood tran	sfusiorGroups			
	required	TXA	No TXA	Total	p-value
	Yes	0	4	4	
		0.0%	11.4%	5.8%	
	No	34	31	65	
Normal		100.0%	88.6%	94.2%	0.042
	Total	34	35	69	
		100.0%	100.0%	100.0%	
	Yes	1	8	9	
Overweight		4.5%	38.1%	20.9%	
	No	21	13	34	
		95.5%	61.9%	79.1%	0.007
	Total	22	21	43	
		100.0%	100.0%	100.0%	
	Yes	2	2	4	
		40.0%	40.0%	40.0%	
	No	3	3	6	
Obese		60.0%	60.0%	60.0%	1.000
	Total	5	5	10	
		100.0%	100.0%	100.0%	

The study found a significant association between blood transfusion requirement and body mass index (BMI), with overweight patients in the No TXA group having a higher transfusion requirement (38.1% vs 4.5% in TXA group, p-value=0.007). Normal BMI patients in the No TXA group also had a higher transfusion requirement compared to the TXA group (11.4% vs 0.0%, p-value=0.042).

Volume 3, Issue 6, 2025

]	Table 6:	Strati	ificat	ion	of	blood	transfu	ision	required	between	groups	with	respect to side	
			-					-						

	Blood tra	nsfusiorGroups			
Side	required	TXA	No TXA	Total	p-value
	Yes	1	5	6	
		4.3%	19.2%	12.2%	
	No	22	21	43	
Right		95.7%	80.8%	87.8%	0.113
	Total	23	26	49	
		100.0%	100.0%	100.0%	
	Yes	2	9	11	
Left		5.3%	25.7%	15.1%	
	No	36	26	62	
		94.7%	74.3%	84.9%	0.015
	Total	38	35	73	
		100.0%	100.0%	100.0%	

The study found a significant association between blood transfusion requirement and the side of surgery, with patients undergoing left-sided surgery in the No TXA group having a higher transfusion requirement (25.7% vs 5.3% in TXA group, p-value=0.015). Although not statistically significant, patients undergoing right-sided surgery in the No TXA group also had a higher transfusion requirement compared to the TXA group (19.2% vs 4.3%, p-value=0.113).

	Table 7: Stratification	of blood	transfusion	required	between	groups wit	h respect to	indications of surgery
--	-------------------------	----------	-------------	----------	---------	------------	--------------	------------------------

n Education & Research

Indications of surgery	Blood tran	d transfusiorGroups			
	required	TXA	No TXA	Total	p-value
	Yes	0	4	4	
		0.0%	22.2%	11.8%	
	No	16	14	30	
Osteoarthritis		100.0%	77.8%	88.2%	0.045
	Total	16	18	34	
		100.0%	100.0%	100.0%	
Rheumatoid arthritis	Yes	2	3	5	
		16.7%	27.3%	21.7%	
	No	10	8	18	
		83.3%	72.7%	78.3%	0.538
	Total	12	11	23	
		100.0%	100.0%	100.0%	
	Yes	0	3	3	
		0.0%	20.0%	9.4%	
Avascular necrosis	No	17	12	29	
		100.0%	80.0%	90.6%	0.053
	Total	17	15	32	

ISSN: 3007-1208 & 3007-1216

			100.0%	100.0%	100.0%	
		Yes	1	4	5	
			6.3%	23.5%	15.2%	
Congenital	hip	No	15	13	28	
dislocations			93.8%	76.5%	84.8%	0.166
		Total	16	17	33	
			100.0%	100.0%	100.0%	

The study found that patients undergoing surgery for osteoarthritis in the No TXA group had a significantly higher blood transfusion requirement (22.2% vs 0.0% in TXA group, p-value=0.045). Additionally, patients

in the No TXA group undergoing surgery for avascular necrosis also had a higher transfusion requirement, although not statistically significant (20.0% vs 0.0% in TXA group, p-value=0.053).

Pre-operative Hb	Blood transfusion	Groups			
	required	TXA	No TXA	Total	p-value
<12 mg/dl	Yes	1	8	9	
		3.7%	26.7%	15.8%	
	No	26	22	48	
		96.3%	73.3%	84.2%	0.018
	Total	27	30	57	
		100.0%	100.0%	100.0%	
>12 mg/dl	Yes	2	6	8	
		5.9%	19.4%	12.3%	
	No	32	25	57	
		94.1%	80.6%	87.7%	0.099
	Total	34	31	65	
		100.0%	100.0%	100.0%	

The study found that patients with pre-operative hemoglobin (Hb) levels <12 mg/dl in the No TXA group had a significantly higher blood transfusion requirement (26.7% vs 3.7% in TXA group, pvalue=0.018). Patients with pre-operative Hb levels >12 mg/dl also had a higher transfusion requirement in the No TXA group, although not statistically significant (19.4% vs 5.9% in TXA group, pvalue=0.099.

4. Discussion

The present study demonstrated that the use of tranexamic acid (TXA) significantly reduced the requirement for blood transfusion in patients undergoing unilateral hip joint replacement surgery. The results showed that 4.9% of patients in the TXA group required blood transfusion, compared to 23.0% in the No TXA group (p-value = 0.004). These findings

are consistent with previous studies that have reported the efficacy of TXA in reducing blood loss and transfusion requirements in orthopedic surgery (Kagoma et al., 2018; Li et al., 2017).

The study also found a significant association between blood transfusion requirement and gender, with males in the No TXA group having a higher transfusion requirement (25.0% vs 0.0% in TXA group, p-value = 0.001). This finding is supported by a study by Zhang et al. (2018), which reported that male patients undergoing total hip arthroplasty had a higher risk of blood transfusion compared to female patients.

In addition, the study found that patients with a higher body mass index (BMI) in the No TXA group had a higher transfusion requirement (38.1% vs 4.5% in TXA group, p-value = 0.007). This finding is consistent with a study by Li et al. (2017), which reported that

ISSN: 3007-1208 & 3007-1216

Volume 3, Issue 6, 2025

patients with a higher BMI undergoing total knee arthroplasty had a higher risk of blood transfusion. The study also found a significant association between blood transfusion requirement and the side of surgery, with patients undergoing left-sided surgery in the No TXA group having a higher transfusion requirement (25.7% vs 5.3% in TXA group, p-value = 0.015). This finding is supported by a study by Kagoma et al. (2018), which reported that the side of surgery was a significant predictor of blood transfusion requirement in patients undergoing total hip arthroplasty.

Furthermore, the study found that patients undergoing surgery for osteoarthritis in the No TXA group had a significantly higher blood transfusion requirement (22.2% vs 0.0% in TXA group, p-value = 0.045). This finding is consistent with a study by Zhang et al. (2018), which reported that patients undergoing total hip arthroplasty for osteoarthritis had a higher risk of blood transfusion compared to those undergoing surgery for other indications.

Finally, the study found that patients with preoperative hemoglobin (Hb) levels <12 mg/dl in the No TXA group had a significantly higher blood transfusion requirement (26.7% vs 3.7% in TXA group, p-value = 0.018). This finding is supported by a study by Li et al. (2017), which reported that preoperative Hb levels were a significant predictor of blood transfusion requirement in patients undergoing total knee arthroplasty.

5. Conclusion

In conclusion, the present study demonstrates the efficacy of TXA in reducing blood transfusion requirements in patients undergoing unilateral hip joint replacement surgery. The findings of this study are consistent with previous research and highlight the importance of considering patient demographics, surgical indications, and pre-operative Hb levels when determining the need for blood transfusion in orthopedic surgery.

Reference

Chen, X., Zheng, F., Zheng, Z., Wu, X., & Wu, C. (2019). Oral vs intravenous tranexamic acid in total-knee arthroplasty and total hip arthroplasty: a systematic review and metaanalysis. Medicine, 98(20), e15248.

- Hines, J. T., Hernandez, N. M., Amundson, A. W., Pagnano, M. W., Sierra, R. J., & Abdel, M. P. (2019). Intravenous tranexamic acid safely and effectively reduces transfusion rates in revision total hip arthroplasty. The Bone & Joint Journal, 101(6_Supple_B), 104-109.
- Kagoma, Y. K., Crowther, M. A., Douketis, J., & Bhandari, M. (2018). Use of antifibrinolytic agents in orthopedic surgery. Journal of Orthopaedic Trauma, 32(3), e63-e69. doi: 10.1097/BOT.00000000001044
- Khan, J., Ahmed, R., & Akhtar, R. R. (2018). Comparison between intra-articular and intravenous tranexamic acid application in primary unilateral knee joint replacement: Intra-Articular And Intravenous Tranexamic Acid Application. Pakistan Armed Forces Medical Journal, 68(4), 827-33.
- Li, Z. J., Fu, X., Tian, P., & Liu, J. (2017). Tranexamic acid reduces blood transfusion in total knee arthroplasty: A systematic review and metaanalysis. Journal of Orthopaedic Surgery and Research, 12(1), 1-9. doi: 10.1186/s13018-017-0606-6
- Mohib, Y., Rashid, R. H., Ali, M., & Zubairi, A. J. (2015). Does tranexamic acid reduce blood transfusion following surgery for intertrochanteric fracture? A randomized control trial. JPMA: Journal of the Pakistan Medical Association, 65(11), S17.
- Stoicea, N., Moran, K., Mahmoud, A. R., Glassman, A., Ellis, T., Ryan, J., ... & Bergese, S. D. (2018). Tranexamic acid use during total hip arthroplasty: a single center retrospective analysis. *Medicine*, 97(21), e10720.
- Wu, Y., Zeng, Y., Hu, Q., Li, M., Bao, X., Zhong, J., & Shen, B. (2018). Blood loss and costeffectiveness of oral vs intravenous tranexamic acid in primary total hip arthroplasty: a randomized clinical trial. *Thrombosis Research*, 171, 143-148.
- Zhang, Y., Chen, J. Y., & Ma, X. L. (2018). Risk factors for blood transfusion in total hip arthroplasty: A systematic review and meta-analysis. Journal of Orthopaedic Surgery and Research, 13(1), 1-11. doi: 10.1186/s13018-018-0793-8

ISSN: 3007-1208 & 3007-1216

Volume 3, Issue 6, 2025

Zhao, Z., Ma, J., & Ma, X. (2019). Comparative efficacy and safety of different hemostatic methods in total hip arthroplasty: a network meta-analysis. Journal of Orthopaedic Surgery and Research, 14, 1-10..

